a2 United States Patent

Chakradhar et al.

US009335981B2

US 9,335,981 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)
(52)

(58)

SOURCE-TO-SOURCE TRANSFORMATIONS
FOR GRAPH PROCESSING ON MANY-CORE
PLATFORMS

Applicant: NEC Laboratories America, Inc.,

Princeton, NJ (US)

Inventors: Srimat Chakradhar, Manalapan, NJ
(US); Michela Becchi, Columbia, MO
(US); Da Li, Columbia, MO (US)

Assignee: NEC Corporation (IP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/510,660

Filed: Oct. 9, 2014

Prior Publication Data
US 2015/0113514 Al Apr. 23,2015

Related U.S. Application Data

Provisional application No. 61/929,521, filed on Jan.
21, 2014, provisional application No. 61/892,497,
filed on Oct. 18, 2013.

Int. CL.
GO6F 9/45
U.S. CL
CPC . GO6F 8/456 (2013.01); GOGF 8/51 (2013.01)
Field of Classification Search

CPC GOGF 8/51; GOGF 8/456
USPC 717/149
See application file for complete search history.

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2010/0153956 Al* 6/2010 Capps, Jr. .ccooevinn. GO6F 9/30
718/102
2010/0306752 Al* 12/2010 Bordelon GOGF 8/4452
717/149
2014/0019949 Al* 1/2014 Craymer GOG6F 8/452
717/150
2014/0047421 Al* 2/2014 Shimizu GO6F 17/12
717/149
2014/0092087 Al* 42014 Kazama ... GO6F 9/505
345/420
2014/0282572 Al* 9/2014 Kang GOG6F 9/4881
718/103

* cited by examiner

Primary Examiner — John Chavis
(74) Attorney, Agent, or Firm — Joseph Kolodka

(57) ABSTRACT

Methods are provided for source-to-source transformations
for graph processing on many-core platforms. A method
includes receiving a graph application including one graph,
expressed by a graph application programming interface con-
figured for defining and manipulating graphs. The method
further includes transforming, by a source-to-source com-
piler, the graph application into a plurality of parallel code
variants. Each of the plurality of parallel code variants is
specifically configured for parallel execution by a target one
of a plurality of different many-core processors. The method
also includes selecting and tuning, by a runtime component, a
particular one of the parallel code variants for the parallel
execution responsive to graph application characteristics,
graph data, and an underlying code execution platform of the
plurality of different many-core processors.

17 Claims, 2 Drawing Sheets

P 200

RECEIVE A GRAPH APPLICATION, THAT INCLUDES AT LEAST ONE
GRAPH, EXPRESSED BY A GRAPH PROGRAMMING APPLICATION
PROGRAMMING INTERFACE (AP1) SPECIFICALLY CONFIGURED FOR
DEFINING AND MANIPULATING GRAPHS

!

TRANSFORM THE GRAPH DATA INTO A SOURCE-TO-SOQURCE COMPILER
TO GENERATE PARALLEL CODE FOR DIFFERENT MANY-CORE 220
PROCESSORS

v

DETERMINE INTERNAL GRAPH CONTAINER DATA STRUCTURES |,
(E.G., ORDERED SET, UNORDERED SET, MULTI-SET, QUEUE, ETC.)

i

TRANSFORM THE INTERNAL GRAPH CONTAINER DATA
STRUCTURES INTO INTERNAL, PLATFORM-SPECIFIC CONTAINER
DATA STRUCTURES, USING PARALLEL CODE TRANSFORMATION

PERFORMED BY PARALLEL ITERATORS, AND USING PARALLEL
BLOCKS OF CODE FOR PRIMITIVES

2208

i

TRANSFORM PLATFORM-INDEPENDENT SYNCHRONIZATION
PRIMITIVES INTO PLATFORM-SPECIFIC SYNCHRONIZATION
FRIMITIVES

220C

i

GENERATE/MANAGE SYNCHRONIZATIONS ASSOCIATED WITH THE 2200
GRAPH, THE CONTAINERS, AND THE ITERATORS

v

INVOKE THE RUN-TIME LIBRARY TO PERFORM CODE VARIANT
SELECTION AND TUNING RESPONSIVE TO GRAPH CHARACTERISTICS, | 230
GRAPH DATA, AND AN UNDERLYING CODE EXECUTION PLATFORM

v

INVOKE THE RUN-TIME LIBRARY TO PERFORM DYNAMIC MEMORY
ALLOCATION

240

END

US 9,335,981 B2

Sheet 1 of 2

May 10, 2016

U.S. Patent

L Ol
% <«
JH0ud HO1DIJSNI
IUVYMAVYH HdV¥D laver| |ver|
vel
FEVMAHVH SWSINVHOIW VLY HAYHO
_ NOILYZINOYHONAS
€8l SI41D3dS
T ; WHOH1Y1d _
ww_uuo_\qm/_\ﬂ_ |oezr || acer || veer | NOLLYDITddY
- DINVNAC =T HdVHO
61 v
SMO01E Y
2ISva T3 TTvaVd 0Ll
5T IV
— ONINNYHO O
_ Lel |ozzr||gzer || veer | HdVy9
Z61 H3ANNL —
ANV A
¥O103713S (AN HOLVININATdINI
INVINVYA SNOILDITIOOD
TYNSILNI
6T 181 12T
L FUNLONYLS VIVA 7T
Oct HdVHO TYNY3LNI SNOILYDIJIAON
Mw@_mnmm - HdWH9 INIINO
I AINOD

A

304dN0S-01-304N0S

X 00l

U.S. Patent May 10, 2016 Sheet 2 of 2 US 9,335,981 B2

0

RECEIVE A GRAPH APPLICATION, THAT INCLUDES AT LEAST ONE
GRAPH, EXPRESSED BY A GRAPH PROGRAMMING APPLICATION
PROGRAMMING INTERFACE (API) SPECIFICALLY CONFIGURED FOR
DEFINING AND MANIPULATING GRAPHS

v

TRANSFORM THE GRAPH DATA INTO A SOURCE-TO-SOURCE COMPILER
TO GENERATE PARALLEL CODE FOR DIFFERENT MANY-CORE 220
PROCESSORS

v

DETERMINE INTERNAL GRAPH CONTAINER DATA STRUCTURES
(E.G., ORDERED SET, UNORDERED SET, MULTI-SET, QUEUE, ETC.)

y

TRANSFORM THE INTERNAL GRAPH CONTAINER DATA
STRUCTURES INTO INTERNAL, PLATFORM-SPECIFIC CONTAINER
DATA STRUCTURES, USING PARALLEL CODE TRANSFORMATION | 2208

PERFORMED BY PARALLEL ITERATORS, AND USING PARALLEL
BILOCKS OF CODE FOR PRIMITIVES

y

TRANSFORM PLATFORM-INDEPENDENT SYNCHRONIZATION
PRIMITIVES INTO PLATFORM-SPECIFIC SYNCHRONIZATION 220C
PRIMITIVES

!

GENERATE/MANAGE SYNCHRONIZATIONS ASSOCIATED WITH THE
GRAPH, THE CONTAINERS, AND THE ITERATORS

v

INVOKE THE RUN-TIME LIBRARY TO PERFORM CODE VARIANT
SELECTION AND TUNING RESPONSIVE TO GRAPH CHARACTERISTICS, | 230
GRAPH DATA, AND AN UNDERLYING CODE EXECUTION PLATFORM

v

INVOKE THE RUN-TIME LIBRARY TO PERFORM DYNAMIC MEMORY
ALLLOCATION

210

220A

220D

240

FIG. 2

US 9,335,981 B2

1
SOURCE-TO-SOURCE TRANSFORMATIONS
FOR GRAPH PROCESSING ON MANY-CORE

PLATFORMS

RELATED APPLICATION INFORMATION

This application claims priority to provisional application
Ser. No. 61/892.,497 filed on Oct. 18, 2013 and to provisional
application Ser. No. 61/929,521 filed on Jan. 21, 2014, incor-
porated herein by reference.

BACKGROUND

1. Technical Field

The present invention relates to data processing, and more
particularly to source-to-source transformations for graph
processing on many-core platforms.

2. Description of the Related Art

Many applications use graphs to represent and analyze
data, but the effective deployment of graph algorithms on
many-core processors is still a challenge task. Although there
are good compilation and runtime frameworks for paralleliz-
ing graph applications on multi-core CPUs, such frameworks
do not exist for many-core devices. There is a need for effi-
cient source-to-source compilers that automatically compile
and parallelize graph applications on many-core processors
because (a) many-core devices offer higher peak performance
than multi-core devices, and (b) many-core programming is
still a highly specialized (and error prone) skill.

SUMMARY

These and other drawbacks and disadvantages of the prior
art are addressed by the present principles, which are directed
to source-to-source transformations for graph processing on
many-core platforms.

According to an aspect of the present principles, a method
is provided. The method includes receiving a graph applica-
tion including one graph, expressed by a graph application
programming interface configured for defining and manipu-
lating graphs. The method further includes transforming, by a
source-to-source compiler, the graph application into a plu-
rality of parallel code variants. Each of the plurality of parallel
code variants is specifically configured for parallel execution
by a target one of a plurality of different many-core proces-
sors. The method also includes selecting and tuning, by a
runtime component, a particular one of the parallel code
variants for the parallel execution responsive to graph appli-
cation characteristics, graph data, and an underlying code
execution platform of the plurality of different many-core
processors.

According to another aspect of the present principles, a
method is provided. The method includes performing, using a
compiling processor, source-to-source compiling on a graph
application that includes at least one graph. The source-to-
source compiling step includes transforming the graph appli-
cation and related container data structures into platform-
specific container data structures, using parallel code
transformation responsive to parallel iterators, and using par-
allel blocks of code for primitives. The source-to-source com-
piling step further includes managing execution synchroni-
zations for the graph, the platform-specific container data
structures, and the iterators. The source-to-source compiling
step also includes converting platform-independent synchro-
nization primitives into platform-specific synchronization
primitives.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to yet another aspect of the present principles, a
method is provided. The method includes configuring a
graph-processing run-time library with a selection processor
configured to select a particular parallel code variant, from
among a plurality of received parallel code variants of a graph
application including at least one graph, for parallel execution
by a target many-core coprocessor responsive to graph appli-
cation characteristics, graph data, and an underlying code
execution platform of the target many-core processor. The
method further includes configuring the run-time library with
dynamic memory allocation management for an execution of
the particular parallel code variant the graph application.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 shows an exemplary graph processing system 100,
in accordance with an embodiment of the present principles;
and

FIG. 2 shows an exemplary method 200 for generating and
executing source-to-source transformations for many-core
processors, in accordance with an embodiment of the present
principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The present principles are directed to source-to-source
transformations for graph processing on many-core plat-
forms. Advantageously, the present principles are suitable for
use with graph applications. However, it is to be appreciated
that the present principles can be used with other types of
applications, while maintaining the spirit of the present prin-
ciples.

The present principles provide a new source-to-source
compiler that automatically generates parallel code for dif-
ferent many-core platforms (e.g., including, but not limited
to, GPUs and the Intel Xeon Phi®) starting from a single,
platform-agnostic graph programming Application Program-
ming Interface (API).

The present principles advantageously automate the devel-
opment of high-performance graph applications on many-
core platforms using the source-to-source compiler of the
present principles.

FIG. 1 shows an exemplary graph processing system 100,
in accordance with an embodiment of the present principles.
The system 100 includes a graph programming Application
Programming Interface (API) 110, a source-to-source com-
piler 120, a runtime library 130, a graph inspector 140, and a
hardware profiler 150.

In an embodiment, the source-to-source compiler 120 is
processor-based. Of course, other elements of FIG. 2 can be
processor-based, while maintaining the spirit of the present
principles.

The source-to-source compiler 120 includes an internal
graph data structure transformer 121, an internal collections
implementator 122, a set of parallel basic blocks 123, a set of
platform-specific synchronization mechanisms transformer
124, a Compute Unified Device Architecture (CUDA) code
writer 125, and an OpenMP code writer 126.

US 9,335,981 B2

3

The internal collections implementator 122 includes con-
tainers. The containers include, for example, a set container
122A, a 31 multi-set container 122B, and a queue container
122C. Of course, other containers can also be used.

The set of parallel basic blocks 123 include primitives. The
primitives include a BFS iterator 123 A, a reduction primitive
123B, and a scan primitive 123C.

The platform-specific synchronization mechanisms trans-
former 124 includes a global/local barrier 124 A and a flat/
hierarchical atomizer 125.

Online graph modifications 171 are provided to the runt-
ime library 130.

A graph application 172 is provided to the graph program-
ming API 110.

Graph data 173 is provided to the graph inspector 140.

The source-to-source compiler 120 outputs variants .,
181, variants,,, 182, and variants;,, 183 corresponding to
the system being used with a multi-core CPU 191, an INTEL
XEON PHI processor 192, and/or an NVIDIA Graphics Pro-
cessing Unit (GPU) 193, respectively.

The runtime library 130 includes a variant selector and
tuner 131 a dynamic memory handler 132.

In an embodiment, an application developer writes the
graph application using a programming interface that
includes ahigh-level graph programming API 110 and a set of
platform-agnostic, sequential and parallel constructs that
allow the user to define generic graph applications. The graph
programming API 110 is implemented and executed by our
new runtime library 130.

Then, the application developer uses the source-to-source
compiler 120 to generate an efficient, highly parallelized
implementation of the graph application, which can run on
different many-core processors like the Intel Xeon Phi® or a
GPU.

The source-to-source compiler 120 generates different
code variants for multi-core CPUs, Intel Xeon Phi® copro-
cessors and NVIDIA® GPUs. These code variants may differ
in several aspects, including, for example: from the type of
parallelization performed, to the implementation of the
underlying data structures, to the handling of nested parallel-
ism, and more. The generated code is written in OpenMP and
CUDA and, in an embodiment, it uses the offload execution
model on the Intel® Phi. During code generation, the graph
and the containers (sets 122A, multi-sets 122B, and queues
122C) are transformed into internal, platform-specific data
structures by the platform-specific synchronization mecha-
nisms transformer 124. In addition, existing parallel basic
blocks 123 are used for common primitives such as reduction
123A, sort 123B, and scan 123C. Parallelization is enabled by
the presence of parallel iterators, which can be explicitly
inserted in the code by the programmer. The source-to-source
compiler 120 automatically handles synchronizations associ-
ated with the graph, the iterators and the containers. Synchro-
nizations associated with custom data structures can be
explicitly indicated by the programmer using high-level, plat-
form-independent synchronization primitives, which are
transformed into platform-specific synchronization mecha-
nisms by the platform-specific synchronization mechanisms
transformer 124.

Finally, the runtime system supports two important func-
tions: (i) selecting, by the variant selector and tuner 130 A, the
most suitable code variant depending on the characteristics of
the application, the dataset and the underlying platform, and
(ii) supporting, by the dynamic memory handler 130B,
dynamic memory allocation through the offset address.

In an embodiment, the variant selector and tuner 130A
includes a selection processor for implementing the selection

10

15

20

25

30

35

40

45

50

55

60

65

4

and tuning. In an embodiment, the selection processor can
also be used to execute a selected code variant for a graph
application including at least one graph. Tuning can be per-
formed on a selected code variant to avoid execution errors
and to optimize parallel execution of at least portions of the
selected code variant.

FIG. 2 shows an exemplary method 200 for generating and
executing source-to-source transformations for many-core
processors, in accordance with an embodiment of the present
principles. Steps 210 and 220 correspond to a code generation
time, and steps 230 and 240 corresponds to runtime. It is to be
appreciated that while the following steps are labeled sequen-
tially, such labeling is not intended to imply any specific
ordering, as some steps can be performed out of order as well
as in parallel. These and other variations to method 200 are
readily determined by one of ordinary skill in the art given the
teachings of the present principles provided herein, while
maintaining the spirit of the present principles.

At step 210, receive a graph application, that includes at
least one graph, expressed by a graph programming applica-
tion programming interface (API) specifically configured for
defining and manipulating graphs. The expression of the
graph application can include node information, edge infor-
mation, root information, weight information, and so forth.
The expression of the graph application received at step 210
can further include, for example, but is not limited to, primi-
tives. The primitives can include, but are not limited to,
dynamic memory management primitives, parallel primi-
tives, synchronization primitives, and runtime primitives.

Further regarding step 210, as well as API 110, the API
includes methods to define and manipulate application spe-
cific attributes, container data structures, parallel code itera-
tors, dynamic memory management primitives, parallel
primitives, synchronization primitives, and runtime primi-
tives.

At step 220, transform the graph data into a source-to-
source compiler to generate parallel code for different many-
core processors.

Step 220 can include, for example, steps 220A through
220DMd.

At step 220A, determine internal graph container data
structures (e.g., ordered set, unordered set, multi-set, queue,
etc.). These internal graph container data structures are typi-
cally platform-independent.

At step 2220B transform the internal graph container data
structures into internal, platform-specific container data
structures (by the platform-specific synchronization mecha-
nisms transformer 124), using parallel code transformation
performed by parallel iterators, and using parallel blocks of
code for primitives.

At step 220C, transform platform-independent synchroni-
zation primitives into platform-specific synchronization
primitives (by the platform-specific synchronization mecha-
nisms transformer 124).

At step 220D, generate/manage synchronizations associ-
ated with the graph, the containers, and the iterators.

At step 230, invoke the run-time library to perform code
variant selection and tuning responsive to graph characteris-
tics, graph data, and an underlying code execution platform.

At step 240, invoke the run-time library to perform
dynamic memory allocation.

US 9,335,981 B2

5

An exemplary graph programming API that can be used for
API 110 is as follows:

GRAPH API

graph/node/edge

Default attributes

graph: nodes, edges, root, num_ nodes, num__edges, directed
node: (in_/out_)neighbors, (in__/out_)edges, (infout)degree,
level

edge: left, right, weight; primitive: node mate(node)

Methods to define/manipulate application-specific attributes
void addAttr(graph/node/edge, attr__name, type, default_ value);
void setAttr(attr__name, value);

value getAttr(attr__name);

CONTAINER DATA STRUCTURES

set: void add(item), void remove(item), bool include(item),
bool empty(), int size(), void clear(), bool equal(set)

oset: primitives of set; item first(), item next(item)

multiset, omultiset: primitives of set/oset, int occurrences(item)
queue: void push(item), item pop(), item front(), int size(),
bool empty(), item next(item), void clear()

ITERATORS

sequential:

while(condition [; dynamic_ update(set)])

for(datatype item:domain [; dynamic_ update(set)])(filter)
parallel:

foreach(datatype item:domain [; clear domain])(filter)
inBFS(var: domain from source__node)

DYNAMIC MEMORY MANAGEMENT PRIMITIVES
newGraph

addNode/deleteNode

addEdge/addDirectEdge/deleteEdge

new/delete

PARALLEL PRIMITIVES

item reduction(container, operator)

void scan(in__container, out__container, operator)

void sort(in__container, out__container)
SYNCHRONIZATION PRIMITIVES

barrier

critical{ }

RUNTIME PRIMITIVES

void commit(bool) - commits a set of changes to the graph and,
if parameter is true, to the working set

void rebalance() - rebalance an extended CSR representation

A description will now be given regarding some of the
benefits/advantages of the present principles over the prior
art.

The graph programming API 210 has many primitives that
specifically help in automatically generating parallelized
code for a variety of different many-core platforms.

The source to source compiler 120 has many new transfor-
mations to generate efficient parallelized code by recognizing
parallelizing opportunities exposed by the use of the graph
programming API 210 by the application developer to write
the graph application.

The design of the run-time library 130 is specific to each
many-core platform, and one key strength of the run-time
library 130 is that it can dynamically select and tune the code
variant that better fits the characteristics of the target dataset
and the hardware profile, as well as enable dynamic memory
allocation.

A description will now be given of some of the many
attendant competitive/competitive values of the present prin-
ciples.

The present principles offer at least the following two
values: (a) our source-to-source compiler generates parallel-
ized code for graph applications so that they execute as fast as
manually optimized code for many-core processors, and (b)
the time required to develop good parallel versions of the code
that can execute on many-core processors is reduced by 10x
to 100x, and our procedure is completely automatic.

Embodiments described herein may be entirely hardware,
entirely software or including both hardware and software

10

15

20

25

30

35

40

45

50

55

60

65

6

elements. In a preferred embodiment, the present invention is
implemented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

Embodiments may include a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. A com-
puter-usable or computer readable medium may include any
apparatus that stores, communicates, propagates, or trans-
ports the program for use by or in connection with the instruc-
tion execution system, apparatus, or device. The medium can
be magnetic, optical, electronic, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propaga-
tion medium. The medium may include a computer-readable
medium such as a semiconductor or solid state memory, mag-
netic tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk and an optical disk, etc.

It is to be appreciated that the use of any of the following
“/”, “and/or”, and “at least one of”, for example, in the cases
of “A/B”, “A and/or B” and “at least one of A and B”, is
intended to encompass the selection of the first listed option
(A) only, or the selection of the second listed option (B) only,
or the selection of both options (A and B). As a further
example, in the cases of “A, B, and/or C” and “at least one of
A, B, and C”, such phrasing is intended to encompass the
selection of the first listed option (A) only, or the selection of
the second listed option (B) only, or the selection of the third
listed option (C) only, or the selection of the first and the
second listed options (A and B) only, or the selection of the
first and third listed options (A and C) only, or the selection of
the second and third listed options (B and C) only, or the
selection of all three options (A and B and C). This may be
extended, as readily apparent by one of ordinary skill in this
and related arts, for as many items listed.

The foregoing is to be understood as being in every respect
illustrative and exemplary, but not restrictive, and the scope of
the invention disclosed herein is not to be determined from the
Detailed Description, but rather from the claims as inter-
preted according to the full breadth permitted by the patent
laws. Additional information is provided in an appendix to the
application entitled, “Additional Information™. It is to be
understood that the embodiments shown and described herein
are only illustrative of the principles of the present invention
and that those skilled in the art may implement various modi-
fications without departing from the scope and spirit of the
invention. Those skilled in the art could implement various
other feature combinations without departing from the scope
and spirit of the invention.

What is claimed is:

1. A method, comprising:

receiving a graph application including one graph,
expressed by a graph application programming interface
configured for defining and manipulating graphs;

transforming, by a source-to-source compiler, the graph
application and related container data structures into a
platform-specific container data structures including a
plurality of parallel code variants, each of the plurality of
parallel code variants being specifically configured for
parallel execution by a target one of a plurality of differ-
ent many-core processors, wherein different parallel
code variants are generated for each of the different
many-core processors;

managing execution synchronizations for the graph and the
platform-specific container data structures, the manag-

US 9,335,981 B2

7

ing including converting platform-independent syn-
chronization primitives into platform-specific synchro-
nization primitives; and

selecting and tuning, by a runtime component, a particular

one of the parallel code variants for the parallel execu-
tion responsive to graph application characteristics,
graph data, and an underlying code execution platform
of the plurality of different many-core processors.

2. The method of claim 1, further comprising selecting the
target one of the plurality of different many-core processors
as a best match to computational needs of the graph applica-
tion from among the plurality of many-core processors.

3. The method of claim 1, wherein the runtime component
is a runtime library.

4. The method of claim 3, wherein the run-time component
performs dynamic memory allocation.

5. The method of claim 3, wherein the run-time library
selects and tunes the particular one of the parallel code vari-
ants for execution responsive to one or more hardware pro-
files relating to the underlying code execution platform.

6. The method of claim 1, wherein the application pro-
gramming interface includes methods to define and manipu-
late application specific attributes, container data structures,
parallel code iterators, dynamic memory management primi-
tives, parallel primitives, synchronization primitives, and
runtime primitives.

7. The method of claim 6, wherein the parallel primitives
comprise a reduction primitive, a scan primitive, and a sort
primitive.

8. The method of claim 6, wherein the synchronization
primitives comprise a barrier primitive and a critical primi-
tive.

9. The method of claim 6, wherein the runtime primitives
comprise a commit primitive and a rebalance primitive.

10. The method of claim 1, wherein the runtime component
dynamically manages, using a dynamic memory manage-
ment technique, runtime graph-topology modifications for
the graph application.

11. The method of claim 1, wherein the graph application
programming interface is platform-independent, and
includes a set of platform independent sequential and parallel
constructs.

12. The method of claim 1, further comprising dynamically
managing, by a runtime dynamic memory manager with one
or more runtime dynamic memory management techniques,
runtime graph-topology modifications for the graph applica-
tion.

13. A method, comprising:

performing, using a compiling processor, source-to-source

compiling on a graph application that includes at least
one graph, wherein said source-to-source compiling
step includes:

10

20

25

30

35

40

45

50

8

transforming the graph application and related container
data structures into platform-specific container data
structures, using parallel code transformation respon-
sive to parallel iterators, and using parallel blocks of
code for primitives, and

managing execution synchronizations for the graph, the
platform-specific container data structures, and the
iterators; and

converting platform-independent synchronization
primitives into platform-specific synchronization
primitives.

14. A non-transitory article of manufacture tangibly
embodying a computer readable program which when
executed causes a computer to perform the steps of claim 13.

15. A method comprising:

configuring a graph-processing run-time library with a

selection processor configured to select a particular par-
allel code variant, from among a plurality of parallel
code variants of a graph application including at least
one graph, for parallel execution by a target many-core
coprocessor responsive to graph application character-
istics, graph data, and an underlying code execution
platform of the target many-core processor,

wherein the parallel code variants of the graph applica-
tion are specifically configured for parallel execution
by a target one of a plurality of different many-core
processors, and

wherein different parallel code variants are generated for
each of the different many-core processors;

managing execution synchronizations for the graph appli-
cation by converting platform-independent synchroni-
zation primitives into platform-specific synchronization
primitives; and

configuring the run-time library with dynamic memory
allocation management for an execution of the particular
parallel code variant responsive to graph application
characteristics, graph data, and an underlying code
execution platform of the plurality of different many-
core processors.

16. The method of claim 15, wherein a dynamic memory
manager in the runtime library dynamically manages runtime
graph-topology modifications for the graph application,
using one or more dynamic memory management techniques.

17. The method of claim 15, wherein the run-time library
selects the particular parallel code variant for execution
responsive to one or more hardware profiles relating to the
underlying code execution platform.

#* #* #* #* #*

